Nasopharyngeal Bacterial Interactions in Children ## **Technical Appendix** Figure. Number of children by bacterial colonization status in a stationary population (A) and cases enrolled during a specified time period (B). *N*: the population size p₁: the prevalence of bacterium 1 colonization p₂: the prevalence of bacterium 2 colonization r_c: the risk of enrollment among colonization-positive children r_n: the risk of enrollment among colonization-negative children t: a study period Suppose the colonization of bacterium 1 and of bacterium 2 occur independently in the population. The odds ratio between bacterium 1 and bacterium 2 in the population (OR_{pop}) will be OR_{pop} = $$\frac{N \times p_{1} \times p_{2} \times N \times [1 - \{(p_{1} + p_{2}) - (p_{1} \times p_{2})\}]}{N \times \{p_{1} - (p_{1} \times p_{2})\} \times N \times \{p_{2} - (p_{1} \times p_{2})\}}$$ $$= \frac{p_{1} \times p_{2} - (p_{1} \times p_{2}) \times (p_{1} + p_{2}) - (p_{1} \times p_{2})^{2}}{p_{1} \times p_{2} - (p_{1} \times p_{2}) \times (p_{1} + p_{2}) - (p_{1} \times p_{2})^{2}}$$ $$= 1$$ The OR between bacterium 1 and bacterium 2 in the enrolled cases will be $$OR_{case} = OR_{pop} \times \frac{\frac{r_{c} \times t \times r_{n} \times t}{r_{c} \times t \times r_{c} \times t}}{r_{c} \times t \times r_{c} \times t}$$ $$= OR_{pop} \times \frac{\frac{r_{n}}{r_{c} \times t \times r_{n} \times t}}{r_{c} \times t \times r_{n} \times t}$$ $$= OR_{pop} \times \frac{\frac{r_{n}}{r_{n}}}{r_{c}}$$ $$= \frac{r_{n}}{r_{c}}$$ which is the reciprocal of risk ratio for enrollment (= developing the disease; r_c/r_n).